Bregman Divergences and the Self Organising Map
نویسندگان
چکیده
We discuss Bregman divergences and the very close relationship between a class of these divergences and the regular family of exponential distributions before applying them to various topology preserving dimension reducing algorithms. We apply these methods to identification of structure in magnetic resonance images of the brain and show that different divergences reveal different structure in these images.
منابع مشابه
Non-flat Clusteringwhith Alpha-divergences
The scope of the well-known k-means algorithm has been broadly extended with some recent results: first, the kmeans++ initialization method gives some approximation guarantees; second, the Bregman k-means algorithm generalizes the classical algorithm to the large family of Bregman divergences. The Bregman seeding framework combines approximation guarantees with Bregman divergences. We present h...
متن کاملSubmodular-Bregman and the Lovász-Bregman Divergences with Applications: Extended Version
We introduce a class of discrete divergences on sets (equivalently binary vectors)that we call the submodular-Bregman divergences. We consider two kinds ofsubmodular Bregman divergence, defined either from tight modular upper or tightmodular lower bounds of a submodular function. We show that the properties ofthese divergences are analogous to the (standard continuous) Bregman d...
متن کاملSkew Jensen-Bregman Voronoi Diagrams
A Jensen-Bregman divergence is a distortion measure defined by a Jensen convexity gap induced by a strictly convex functional generator. Jensen-Bregman divergences unify the squared Euclidean and Mahalanobis distances with the celebrated information-theoretic JensenShannon divergence, and can further be skewed to include Bregman divergences in limit cases. We study the geometric properties and ...
متن کاملSymmetrized Bregman Divergences and Metrics
While Bregman divergences [3] have been used for several machine learning problems in recent years, the facts that they are asymmetric and does not satisfy triangle inequality have been a major limitation. In this paper, we investigate the relationship between two families of symmetrized Bregman divergences and metrics, which satisfy the triangle inequality. Further, we investigate kmeans-type ...
متن کاملSubmodular-Bregman and the Lovász-Bregman Divergences with Applications
We introduce a class of discrete divergences on sets (equivalently binary vectors) that we call the submodular-Bregman divergences. We consider two kinds, defined either from tight modular upper or tight modular lower bounds of a submodular function. We show that the properties of these divergences are analogous to the (standard continuous) Bregman divergence. We demonstrate how they generalize...
متن کامل